OPERATION FREQUENCY OF THE SSPS/DCS

by

Belinda Wong Swanson University of Arizona

ABSTRACT

Daily usage factors of the DCS subsystems were calculated to see how often the subsystems were operated during the time the radiation level was above 300 W/M**2. The frequency distribution of the subsystems' working hours on nonholidays were obtained to see their frequency and length of operation within a period.

INTRODUCTION

The function of a solar power plant is to produce electricity. However its productivity its limited by the environmental conditions and thermodynamic transients inherent in the process. It requires sufficient radiation, clear sky and low wind velocity. In addition, depending on the design of the system, there may be a long delay between the turn-on time of the collectors and the time when power is supplied to the utility grid. The frequency and duration of plant operation is one measure of the plant's effectiveness in performing its function.

This paper analyzes the effectiveness of the SSPS/Distributed Collector System (DCS). It uses the hours of operation (working hours) of the subsystems, i.e. single-axis tracking collector field, dual-axis tracking collector field, power conversion system, and hours of connection to the utility grid to find:

- 1) the daily and average daily usage factors,
- 2) the mean working hours, and
- 3) the frequency distribution of the working hours

at each stage of the plant. The usage factors show the percentage of the subsystems' operation time with respect to the hours with sufficient radiation (above 300 W/M**2) to operate the collectors. The mean working hours show the average daily operating time for each subsystem. The frequency distributions tell how often and for how long the subsystems operate.

PROCEDURE

Daily usage factors (duf) for the subsystems were obtained for two types of days:

- 1) Normal operating days __days on which the average radiation is above 300 W/M**2, there are more than 3 hours of radiation above 600 W/M**2, there is no high wind velocity to interrupt collector operation, and there is operation of at least the collector field.
- 2) Good operating days__same environmental conditions

as above but with operation of the entire system.

The equations for the daily usage factor and average daily usage factor have been discussed in detail in section 3.3 of Ref. 1, therefore they will not be given here.

Working hours from all nonholidays in the analysis period are used to find the mean working hours and the variance for each subsystem. The equations are:

$$MEAN = \frac{1}{n} (\stackrel{n}{\Sigma} X) = \overline{X}$$

$$VARIANCE = \frac{\sum_{i=1}^{n} [(x - \overline{x})^{2}]}{n - 1}$$

For the working hour frequency distribution, the working hours are divided into 14 intervals. The first interval is for days which had operating hours greater or equal to 0 and less than 1, the second interval greater or equal to 1 and less than 2, until the last interval for 13 or more operating hours. The number of occurrences or observations (days in this case) in each interval is obtained and is divided by the total number of working days (nonholidays) in the period to find the frequency distribution of the working hours. The number of observations up to each interval are summed up to find the corresponding cumulative value, and divided by the total working days to obtain the cumulative probability.

RESULTS

Average and Daily Average Usage Factors

The daily usage factors and average daily usage factors for the subsystems of single-axis tracking collector field (1-AXIS), dual-axis tracking collector field (2-AXIS), power conversion system (PCS) and power to the grid (GRID) were calculated for two analysis periods--January through April and May through August of 1984--and for two types of operating day.

Table 1 shows the results from the normal operating day analysis. There were altogether 52 normal operating days in the first period and 58 in the second period. Of these, the 1-AXIS system worked for 52 days in period 1 and 56 days in period 2; the 2-AXIS system worked 43 days and 55 days respectively; the PCS 38 and 46 respectively; the GRID 35 and 46 respectively.

Note that there are daily usage factors with values greater than 1.0. This may be that the subsystem operated longer than there were hours of sufficient radiation, or that there were frequent cloud passages.

There were three days during the first period (13 Jan., 20 Feb., 8 Mar.) when the PCS had longer operating hours than those of either collector fields, resulting in higher dufs. On each occassion, the PCS had been out of service for repair the previous days while the collector fields continued to function. Consequently the storage tank became fully charged. When the PCS resumed operation, it had to start working before the collector fields in order to discharge the storage tank.

Table 2 shows the results from the good operating day analysis. Recall these were days of good environmental conditions and that all subsystems had functioned. There were 30 such days in the first period and 43 in the second. Table 3 compares the average daily usage factors of Tables 1 and 2. It could be seen that the duf values on good operating days are slightly higher than those on normal operating days. For those days that the PCS did not function, the collector fields operating time would be limited by the temperature of the storage tank since it is not being discharged. The results show that on those days when there were favourable conditions to operate the DCS, on the average the single-axis system worked for about 90% of the operable hours, the dual-axis 94%, the PCS 50% and the grid 35%.

Working Hour Frequency Distributions

The mean working hours and the working hour frequency distributions of the subsystems and of grid connection on nonholidays are tabulated and plotted in Figures 1 to 4. Figure 5 is the statistics for the operables hours. The analysis period is January to August 1984.

The single-axis system worked 5.13 hours per day on the average, with 37 days or 24% of the total working days with less than 1 hour of operation per day. Excluding the first interval, the most frequently occurred interval is between 7 and 8 hours, with 35 days or 22% of the total working days. It never worked more than ten hours daily.

The dual-axis system averaged 5.48 hours of operation a day. There were 42 days (27% of the total working days) that it worked for 1 hour or less. It has a rather uniform work-hour distribution, with only 15 days (10%) in the peak interval of 8 to 9 working hours. There were 7 days that had between 12 and 13 hours of operation.

The power conversion system averaged 2.39 working hours a day. It operated for less than 1 hour on 72 (46%) of the working days. The peak interval is between 3 and 4 hours with 19 working days (12%). There was 1 day that it worked between 10 to 11 hours.

There was 1.77 hours of grid synchronization a day on the average, 77 (49%) of the working days had less than 1 hour of power supply to the grid. The peak occurs between hours 1 and 3, with 38 (24%) working days falling in these two intervals. There was 1 day when power was supplied to the grid for 9 to 10 hours.

During the first eight months of 1984, the average daily hours with radiation above 300 W/M**2 was 7.39. Fourteen (9%) working days had less than 1 hour of operable radiation; twenty-one (13%) had between 9 to 10 hours, which was the most frequent interval. There was 1 day with over 13 hours of radiation above 300 W/M**2.

Cumulative Distributions

The cumulative distributions of the subsystems working hours and of the operable hours are shown in Figure 6. It could be seen that 51% of the total working days had 1 or more hours of power supply to the grid; 41% had between 1 to 5 hours and 10% between 5 and 10 hours. The PCS had 1 or more hour of operation 54% of the total working days; it worked for 1 to 3 hours 15% of the time, 3 to 7 hours about 35% of the time and between 7 to 10 hours per day 4% of the time. The dual-axis collector system had at least 1 working hour 73% of the total working days; 10% was between 1 and 4 hours, 61% between 4 and 11 hours, and 2% between 11 and 13 hours of operation per day. The single-axis tracking collector system worked at least one hour 76% of the total working days; 16% was between 1 and 5 hours, 40% between 5 and 9 hours, and 20% between 9 and 10 hours.

There was at least one hour of operable radiation 91% of the total working days; 21% had between 1 and 6 hours, 55% between 6 and 11 hours, and 15% between 11 and 14 hours. Thus most of the working days had around 6 to 11 hours of radiation above 300 W/M**2, with the collector fields working between 4 to 10 hours daily. In general the PCS worked for 3 to 7 hours per day, and power was supplied to the grid between 1 and 5 hours.

The energy production for the first eight months of 1984 amounts to 360.56 MWH for the single-axis tracking collector field and 288.70 MWH for the dual-axis tracking collector field. This shows that the single-axis collectors are more effective: they produced more energy while requiring less operating time.

CONCLUSIONS

Daily usage factors and frequency distributions of the Distributed Collector System were obtained to see the frequency and length of subsystems' operation and of power supply to the utility grid during the first eight months of 1984. The general conclusions are:

- 1) From the duf analysis, it was observed that while there were occassions when the collectors worked for longer hours than there were hours of radiation above 300 W/M**2 (operable hours), they did not occur frequently. This indicates that the collectors usually stopped operation before the radiation level has been reduced to 300 W/M**2.
- 2) The single-axis tracking collectors worked for 90% and the dual-axis tracking collectors 94% of the operable hours. The power conversion system worked for about 50% and there was power to the grid 35% of the operable hours.
- 3) The working hour frequency distribution analysis found that there was 7.4 hours of operable radiation per day on the average, with the dual-axis system working for 5.5 hours and the single-axis system for 5 hours. The power conversion system averaged 2.4 hours of daily operation while power was supplied to the utility grid about 1.8 hours per day.
- 4) A majority of the working days had from 6 to 11 hours of operable radiation; the single-axis tracking collectors worked between 5 and 10 hours daily, the dualaxis collectors between 4 and 11 hours daily for most of the working days. The power conversion system usually operated for 3 to 7 hours per day, with power being supplied to the grid 1 to 5 hours a day.
- 5) The single-axis tracking collectors have operated more effectively than the dual-axis collectors in the first eight months of 1984. The single-axis system had higher energy production but required less daily working hours.

REFERENCE

1) "Maintenance, Reliability, Availability", B.W. Swanson and R. Fazzolare, IEA/SSPS Distributed Collector System Deliverable Review. Tabernas, October 1984.

ACKNOWLEDGEMENTS

I would like to thank Juan Ramos of Cia. Sevillana for his invaluable support and advice on this study.

TABLE 1: DCS Subsystems Usage Factors For Normal Operating Days

19T PERIOD	184				2ND PERIOD	184			
DAILY USAGE	FACTOR	S FOR:			DAILY USAGE	FACTOR	S FOR:		
<i>571,21</i>	1-AXIS	2-AXIS	PCS	GRID			2-AXIS	PCS	GRID
40184 1.	0. 823	0. 809	0. 206	0. 000	30584 1.	0. 936	0. 000	0. 368	0. 211
50184 2	1,000	0. 955	0. 576	0. 409	40584 2.	1.020	1.141	0.484	0.386
100164 S.	0. 594	0. 951	0. 477	0. 300	110584 3.	1.112	1.295	0.000	0.000
110184 4.	0. 546	9. 507	0.000	0.000	140584 4.	0. 661	0. 526	0.000	0.000
130184 5.	0.684	0.669	0.788	0. 570	150584 5	0. 870	1.086	0. 692	0. 586
160184 6.	0. 977	0. 986	0.489	0. 306	180584 6.	1.014	0. 966	0.609	0.417
170184 7.	0. 901	0.918	0. 489	0. 369	210584 7.	0.820	1.008	0.519	0.423
100104 9.	1.008	1.015	0. 579	0. 448	220584 8. 230584 9.	0.733	0.867	0.655	0.597
240184 9.	0.666	0.000	0.000	0. 000	240584 10	0. 743 0. 709	0. 922	0.677	0.617
250 184 10.	0. 971	0. 929	0. 551	0.313	250584 11.	1.181	0. 776 1. 305	0.585	0.503
260164 11.	1.136	1.020	0.000	0.000	280584 12	0.430	0, 520	0.327 0.000	0.174
270184 12.	0. 692	0, 653	0.470	0, 205 0, 297	310584 13.	0. 903	0.846	0.541	0.374
300184 13.	0. 947	0. 985 0. 897	0. 480 0. 636	0. 313	40684 14.	0.846	1.045	0.826	0.721
310184 14.	0. 944 0. 938	0. 972	0. 505	0.382	60684 15.	0.734	0. 923	0.532	0.461
10284 15. 60254 16	0. 738	0.772	0.387	0. 174	70684 16	0.834	1.056	0.921	0.847
70284 17.	0. 914	0. 995	0.321	0. 189	80684 17	0.000	0.696	0.342	0.241
80204 18.	0. 913	0.806	0. 431	0. 295	110684 18.	0.886	0.969	0.498	0.389
90284 19.	0. 973	0. 991	0.488	0. 355	120684 19.	0.857	0. 988	0.460	0.389
100284 20.	0.649	0. 951	0.513	0. 422	130684 20.	0.843	0. 963	0.546	0.462
130284 21	1.055	1.081	0.000	0.000	140684 21.	0.800	0. 907	0.506	0. 425
200284 22	0.451	0.444	0.480	0. 301	150684 22.	0.820	0. 937	0. 582	0.504
210284 23.	0.740	0.449	0.000	0.000	190684 23. 200684 24.	0.594	0. 745	0.000	0.000
240284 24.	1.151	0.000	0.000	0. 000	20784 25.	0.750 0.782	0.759	0.288	0.172
2 90284 25.	0.817	0. 932	0.000	0. 000	30784 26.	0. 782	0. 771 0. 839	0. 291	0.189
10364 26	0 906	1. 133	0. 461	0. 270	40784 27.	0.768	0. 980	0. 246 0. 424	0. 131
20394 27	0. 545	0. 625	0.074	0.000	50784 28	0.776	1. 036	0. 542	0. 330 0. 448
60384 28.	0. 593	0.000	0.000	0.000	60784 29.	0. 789	1. 047	0.551	0.456
70291 29.	0.313	0.000	0.000	0.000	90784 30.	0.840	1.082	0.371	0. 203
80394 30.	0. 751	0.837	0. 875 0. 659	0. 7 32 0. 516	100784 31.	0.940	1.048	0.000	0.000
90384 31.	0. 996 u. 597	1.089 0.912	ü. 579	0. 449	110784 32.	0.818	0.886	0.256	0.172
120384 32 140384 33.	0. 870	0. 983	0. 617	0. 495	120784 33.	0. 763	0. 935	0.487	0.403
150384 34.	1. 141	1. 246	0. 000	0.000	130784 34.	0. 934	1.086	0.340	0. 237
160364 35.	1.019	0. 781	0. 544	0. 349	160784 35.	0.666	0. 782	0.000	0.000
230384 36	0. 582	0.794	0.000	0.000	170784 36.	0.000	0.845	0. 29 5	0.154
260384 37	0.734	0.000	0.600	0. 495	180784 37.	0. 543	0. 577	0.351	0.163
270384 38.	0.721	0,000	0.464	0.381	190784 38. 200784 39.	0.842	0.882	0. 307	0. 170
280384 39	0.490	0.000	0 246	0. 123	230784 40	0. 789 1. 041	0. 959	0.379	0. 261
290384 40.	1.006	0.000	0. 526	0.404	240784 41	-	1.122 0.898	0.000 0.294	0.000
300384 41	0 749	0.000	0 519	0. 432	260784 42		0. 979	0.000	0.142
40494 42.	0. 746	0.819	0. 635	0. 579	270784 43.		0. 821	0. 244	0. 105
50484 43.	1.153	1, 147	0. 547	0.409	300784 44.	0.819	1.033	0.364	0. 262
60484 44.	0.716	0.888	0. 731 0. 637	0. 645 0. 534	310784 45.	0. 895	1.138	0.510	0.419
110484 45.	0. 824 1. 218	0. 918 1. 333	0. 381	0. 216	10884 46		0. 635	0. 284	0.138
130484 46.	1.005	1. 011	0.000	0. 000	20884 47.		1.002	0.570	0.493
160484 47. 170484 48.	0. 938	1.062	0.142	0. 000	30884 48.		0.912	0.344	0. 243
180484 49.	0. 692	0. 828	0.489	0. 347				0.000	0.000
260484 50.	0. 476	0. 514	0.000	0.000				0.401	0.319
270484 51.	0.874	0.996	0.000	0.000			_	0.385	0. 282
300484 52.	1.022	1.083	0.485	0. 276				0.000	0.000
								0.341	0.176
AVERAGE USA	AGE FACT	ror/DAYS	CONSI	ERED FOR				0.000 0.000	0.000
1-AXIS = 0.			S = 0.5	209/43.				0. 34 8	0. 000 0. 223
PCS = 0	502/38.	GRI	D = 0.2	380/35.				0.348	0. 229
								0. 271	0. 194
						-			- · • · -

AVERAGE USAGE FACTOR/DAYS CONSIDERED FOR: 1-AXIS = 0.808/56.; 2-AXIS = 0.922/55. PCS = 0.445/46.; GRID = 0.336/46.

TABLE 2: DCS Subsystems Usage Factors for Good Operating Days

GOOD O	PERAT	ING DAY	S, 1ST	PERIOD	184	GOOD D	PERAT	ING DAY	3, 2ND	PERIOD	184
DAILY	USAGE	FACTOR	S FOR: 2-AXIS	PCS	GRID	DAILY	USAGE	FACTORS	S FOR: 2-AXIS	PCS	GRID
		I MAIG	E HALL	, 65	GRID			1 4713	e nars	1 03	ON LD
50184	1.	1.000	0. 955	0. 576	0.409	40584	1.	1.020	1.141	0.484	0. 386
100184	2.	0. 994	0. 951	0. 477	0. 300	150584	2.	0.870	1.086	0. 692	0. 586
130184	3.	0.684	0. 669	0. 788	0. 570	180584	3.	1.014	0. 966	0.609	0.417
160184	4.	0. 977	0. 986	0.489	0 . 3 06	210584	4.	0.820	1.008	0.519	0.423
170184	5.	0. 901	0. 918	0.489	0. 369	220584	5.	0. 733	0.867	0. 655	0.597
180184	6.	1.008	1.015	0. 579	0.448	230584	6.	0.743	0.922	0.677	0.617
250184	7.	0. 971	0. 929	0.551	0.313	240584	7.	0.709	0.776	0. 585	0.503
276184	8.	0. 692	0. 653	0.470	0. 205	250584	8.	1. 181	1.305	0.327	0.174
300184	9.	0. 947	0. 985	0.480	0. 297	310584	9.	0. 903	0.846	0.541	0.374
10284	11.	0. 944 0. 938	0. 897 0. 972	0. 636 0. 505	0.313 0.382	40684		0. 8 46 0. 734	1.045 0.923	0. 826 0. 532	0. 721 0. 461
60284	12	0.937	0.962	0. 303	0.382	60684 70684		0. 834	1.056	0.921	0.847
70284		0. 914	0. 762	0.387	0.174	110684		0.886	0.969	0.498	0.847
80284		0. 913	0.806	0. 431	0. 295	120584		0.857	0. 988	0.460	0.389
	15.	0. 773	0. 991	0.488	0. 355	130684		0.843	0. 963	0.546	0. 462
100284		0.849	0. 951	0.513	0. 422	140684		0.800	0. 907	0.506	0.425
200284		0.451	0.444	0 480	0.301	150684		0.820	0. 937	0.582	0. 504
		0.906	1.133	0 461	0. 270	200684		0.750	0.759	0.288	0.172
80384		0.751	0.837	0.875	0. 732	20784		0. 782	0.771	0 291	0.189
90384	20.	0. 996	1.089	0.659	0.516	30784		0.825	0.839	0.246	0.131
120384		0.697	0.912	0.579	0.449	40784		0.768	0.980	0.424	0.330
140384	22.	0.870	0. 983	0.617	0.495	50784	22	0.776	1.036	0.542	0.448
160384	23.	1.018	0.981	0.544	0. 349	60784	23.	0.789	1.047	0.551	0.456
40484	24.	0.746	0.819	0.635	0.579 🕠	90784	24.	0.840	1.082	0.371	0. 203
50484	25.	1.153	1.147	0.547	0.409	110784	25.	0.818	0.886	0.256	0.172
60484	26.	0.716	0.888	0. 731	0.645	120784	26.	0. 763	0. 935	0.487	0.403
110484	27.	0.824	0. 918	0. 637	0. 534	130784		0. 934	1.086	0.340	0. 237
130484		1. 218	1.333	0.381	0. 216	180784		0. 543	0. 577	0.351	0. 163
180484		0. 692	0.828	0. 489	0. 347	190784		0.842	0.882	0. 307	0.170
300484	30.	1.022	1.083	0. 485	0. 276	200784		0. 789	0. 959	0. 379	0. 261
			-			240784		0. 973	0. 898	0. 294	0.142
		AGE FAC				270784		0.729	0. 821	0. 244	0.105
-			-AXIS =			300784		0.819	1.033	0.364	0. 262
PCS	S = 0	543;	GRID =	0 385		310784 10884		0. 8 95 0. 537	1.138	0.510	0.419
						20884		0.740	0. 635 1. 002	0.284 0.570	0.138 0.493
						30884		0.858	0.912	0.344	0. 493
						70584	38.	0.847	0. 912	0. 401	0. 243
						80984	39	0. 714	0. 843	0.385	0.317
				-		130884	_	0.662	0. 913	0.341	0. 176
						290884		0.740	0. 938	0.348	0. 223
						300884		0.779	0. 969	0.313	0. 229
						310884		0.755	0. 908	0. 271	0. 194

AVERAGE USAGE FACTOR: 1-AXIS = 0 811; 2-AXIS = 0.943 PCS = 0 453; GRID = 0.345

Table 3: Average daily usage factors on normal and good operating days in 1984.

	January	- April	May -	August
Subsystem	Normal	Good	Normal	Good
1-AXIS	0.843	0.890	0.808	0.811
2-AXIS	0.909	0.934	0.922	0.943
PCS	0.502	0.543	0.445	0.453
GRID	0.380	0.382	0.336	0.345

CTNOLE	YTE OF	DLLECTOR	ETELT
INTERVAL			<u>F(X)</u>
O <x< 1<="" th=""><th></th><th>0. 2372</th><th>0. 2372</th></x<>		0. 2372	0. 2372
1 <x< 2<="" th=""><th>⊇.</th><th>0.0192</th><th>0. 2564</th></x<>	⊇.	0.0192	0. 2564
5 <x< 3<="" th=""><th>5.</th><th>0.0321</th><th>0. 2885</th></x<>	5.	0.0321	0. 2885
BCXC 4	Ė.	0. 0385	0. 3269
4 <x< 5<="" th=""><th>12.</th><th>0.0769</th><th>0.4038</th></x<>	12.	0.0769	0.4038
SCAC 6	14.	0.0897	0. 4936
6 <x< 7<="" th=""><th>10.</th><th>0.0641</th><th>0. 5577</th></x<>	10.	0.0641	0. 5577
7 < X < 8	35.	0.2244	0.7821
8 <x< 9<="" td=""><td>i8.</td><td>0.1154</td><td>0.8974</td></x<>	i8.	0.1154	0.8974
9 <x<10< td=""><td>16.</td><td>0.1026</td><td>1.0000</td></x<10<>	16.	0.1026	1.0000
10 <x<11< td=""><td>Ο.</td><td>0.0000</td><td>1.0000</td></x<11<>	Ο.	0.0000	1.0000
114XC12	Ο.	0.0000	1.0000
12CXC13	O.	0.0000	1.0000
13 <x< td=""><td>٥.</td><td>0. 0000</td><td>1.0000</td></x<>	٥.	0. 0000	1.0000
MEAN =	5. 13;	VARIANCE	= 11.31

I-AXIS

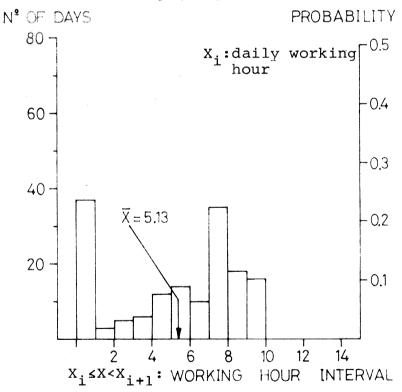


Figure 1: Single-axis tracking collector field daily working hour frequency distribution table and histogram. "OBS'_number of occurrences (days) in each interval. 'f(X)'_probability of ocurrence in the interval. 'F(X)'_cumulative probability up to the interval.

DUAL-AXIS	COLL	ECTOR FIE	ELD
INTERVAL	OBS.	+ (X)	F(X)
0 <x< 1<="" th=""><th>42.</th><th>0.2692</th><th>0.2692</th></x<>	42.	0.2692	0.2692
14X4 2	7.	0.0449	0.3141
2 <x< 3<="" th=""><th>2.</th><th>0.0128</th><th>0. 3269</th></x<>	2.	0.0128	0. 3269
3 <x< 4<="" th=""><th>9.</th><th>0.0577</th><th>0.3846</th></x<>	9.	0.0577	0.3846
4 <x< 5<="" th=""><th>5.</th><th>0.0321</th><th>0. 4167</th></x<>	5.	0.0321	0. 4167
5 CX C 6	11.	0.0705	0. 4872
6 <x< 7<="" th=""><th>14.</th><th>0.0897</th><th>0.5769</th></x<>	14.	0.0897	0.5769
7 <x< 8<="" th=""><th>12.</th><th>0.0769</th><th>0.6538</th></x<>	12.	0.0769	0.6538
8 <x< 9<="" th=""><th>15.</th><th>0. 0962</th><th>0.7500</th></x<>	15.	0. 0962	0.7500
9 <x<10< th=""><th>11.</th><th>0.0705</th><th>0.8205</th></x<10<>	11.	0.0705	0.8205
10 <x<11< th=""><th>13.</th><th>0.0833</th><th>0. 9038</th></x<11<>	13.	0.0833	0. 9038
11 <x<12< th=""><th>Მ.</th><th>0.0513</th><th>0. 9551</th></x<12<>	Მ.	0.0513	0. 9551
12 <x<13< th=""><th>7.</th><th>0.0449</th><th>1.0000</th></x<13<>	7.	0.0449	1.0000
13 <x< th=""><td>Ö.</td><td>0.0000</td><td>1.0000</td></x<>	Ö.	0.0000	1.0000
MEAN = 5	48;	VARIANCE	= 17 66

2-AXIS

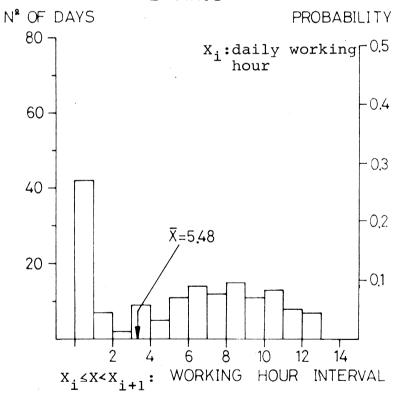


Figure 2: Dual-axis tracking collector field daily working hour frequency distribution table and histogram. 'OBS'_number of occurrences (days) in each interval. 'f(X)'_probability of occurrence in the interval. 'F(X)'_cumulative probability up to the interval

PCS			
INTERVAL	OBS.	f(X)	F(X)
0 <x< 1<="" th=""><td>72.</td><td>0.4615</td><td>0. 4615</td></x<>	72.	0.4615	0. 4615
1 <x< 2<="" th=""><td>4.</td><td>0.0256</td><td>0.4872</td></x<>	4.	0.0256	0.4872
2 <x< 3<="" th=""><td>18.</td><td>0.1154</td><td>0. 6026</td></x<>	18.	0.1154	0. 6026
3 <x< 4<="" th=""><td>19.</td><td>0 1218</td><td>0. 7244</td></x<>	19.	0 1218	0. 7244
4 < ₹< 5	1,5.	0.0962	0.8205
5 <x< 6<="" th=""><td>1 O.</td><td>0.0641</td><td>0.8846</td></x<>	1 O.	0.0641	0.8846
60X< 7	9.	0.0577	0. 9423
7 <x< 8<="" th=""><td>4.</td><td>0. 0256</td><td>0. 9679</td></x<>	4.	0. 0256	0. 9679
8 <x< 9<="" th=""><td>4.</td><td>0. 0256</td><td>0. 9936</td></x<>	4.	0. 0256	0. 9936
9 <x<10< th=""><td>٥.</td><td>0.0000</td><td>0. 9936</td></x<10<>	٥.	0.0000	0. 9936
10 <x<11< th=""><td>1.</td><td>0.0064</td><td>1.0000</td></x<11<>	1.	0.0064	1.0000
11 <x<12< th=""><td>Ο.</td><td>0. 0000</td><td>1.0000</td></x<12<>	Ο.	0. 0000	1.0000
12 <x<13< th=""><td>Ο.</td><td>0.0000</td><td>1.0000</td></x<13<>	Ο.	0.0000	1.0000
13CX	O.	0.0000	1.0000
MEAN =	2.39;	VARIANCE	= 6.79

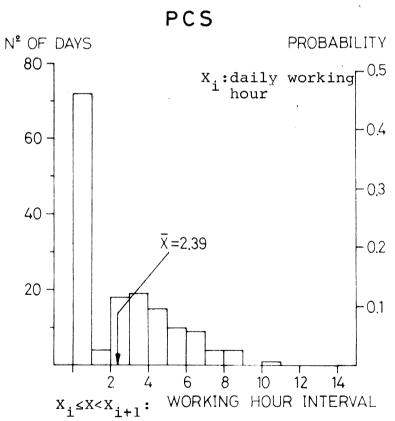


Figure 3: Power conversion system daily working hour frequency distribution table and histogram. 'OBS'_number of occurrences (days) in each interval. 'f(X)'_probability of occurrence in the interval. 'F(X)'_cumulative probability up to the interval.

GRID			
INTERVAL	OBS.	f(X)	F(X)
O <x< 1<="" th=""><th>77.</th><th>0.4936</th><th>0. 4936</th></x<>	77.	0.4936	0. 4936
1 (XC 2	19.	0.1218	0.6154
2 CX < 3	19.	0.1218	0. 7372
3 <x< 4<="" th=""><th>13.</th><th>0. 0833</th><th>0. 8205</th></x<>	13.	0. 0833	0. 8205
4 €X < 5	12.	0.0769	0. 8974
5< X < 6	7.	0.0449	0. 9423
ACXC 7	4.	0. 0256	0. 9679
7 <x< 8<="" th=""><th>3.</th><th>0.0192</th><th>0. 9872</th></x<>	3.	0.0192	0. 9872
BCXC 9	ĺ.	୦. ୦ ୦ 64	0. 9936
9 <x<10< th=""><th>1.</th><th>0.0064</th><th>1.0000</th></x<10<>	1.	0.0064	1.0000
10 <x<11< th=""><th>Ō.</th><th>0.0000</th><th>1.0000</th></x<11<>	Ō.	0.0000	1.0000
11 <x<12< th=""><th>Ö.</th><th>0. 0000</th><th>1.0000</th></x<12<>	Ö.	0. 0 00 0	1.0000
12 <x<13< th=""><th>٥.</th><th>O. OOO</th><th>1.0000</th></x<13<>	٥.	O. O O O	1.0000
13 <x< th=""><th>0.</th><th>୍. ୦୦୦୦</th><th>1.0000</th></x<>	0.	୍. ୦୦୦ ୦	1.0000
MEAN = 1	77:	VARIANCE	= 4.81

GRID

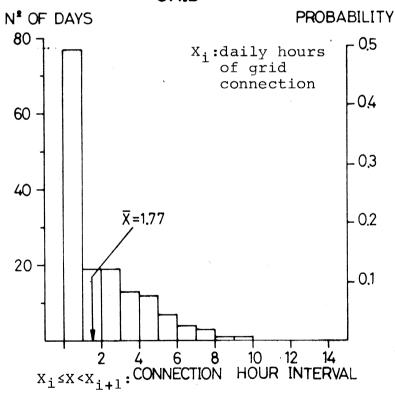


Figure 4: Daily grid connection hour frequency distribution table and histogram. 'OBS'_number of occurrences (days) in each interval. 'f(X)'_probability of occurrence in the interval. 'F(X)'_cumulative probability up to the interval.

		·	
HOURS OF	RADIA	OOECMOITA	W/M**2
INTERVAL	OBS.	f(X)	F(X)
0 <x< 1<="" td=""><td>14.</td><td>0.0897</td><td>0.0897</td></x<>	14.	0.0897	0.0897
1 CX < 2	5.	0.0321	0.1218
2 <x< 3<="" td=""><td>3.</td><td>0.0192</td><td>0.1410</td></x<>	3.	0.0192	0.1410
GCXC 4	4.	0. 0256	0.1667
4 <x< 5<="" td=""><td>11.</td><td>0.0705</td><td>0. 2372</td></x<>	11.	0.0705	0. 2372
5 <x< 6<="" td=""><td>11.</td><td>0.0705</td><td>0.3077</td></x<>	11.	0.0705	0.3077
6 <x< 7<="" td=""><td>11.</td><td>0.0705</td><td>0.3782</td></x<>	11.	0.0705	0.3782
7 <x< 8<="" td=""><td>18.</td><td>0.1154</td><td>0.4936</td></x<>	18.	0.1154	0.4936
8CXC 9	17.	0. 1 09 0	0. 6026
9 <x<10< td=""><td>21.</td><td>0.1346</td><td>0. 7372</td></x<10<>	21.	0.1346	0. 7372
10 <x<11< td=""><td>18.</td><td>0.1154</td><td>0.8526</td></x<11<>	18.	0.1154	0.8526
11 <x<12< td=""><td>16.</td><td>0.1026</td><td>0. 9551</td></x<12<>	16.	0.1026	0. 9551
12 <x<13< td=""><td>७.</td><td>0.0385</td><td>0. 9936</td></x<13<>	७.	0.0385	0. 9936
13CX	1.	0.0064	1.0000
MEAN = 7	7. 39;	VARIANCE	= 12.44

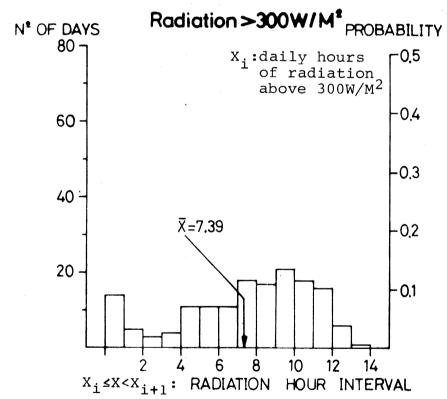
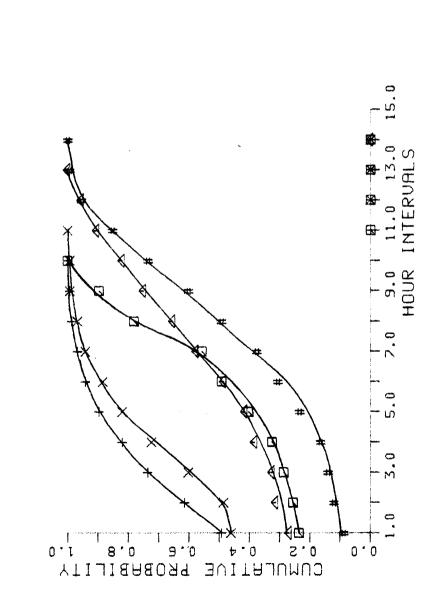



Figure 5: Daily hours of radiation $300W/M^2$ frequency distribution table and histogram. 'OBS'_number of occurrences (days) in each interval. 'f(X)'_probability of occurrence in the interval. 'F(X)'_cumulative probability up to the interval.

